Thermodynamically Consistent Quasi-Newton Formulae
نویسنده
چکیده
Newton and quasi-Newton methods have been used in chemical process design and optimization calculations for quite some time. They continue to be used today, both in the traditional sense and as part of the more recent hybrid method. While Newton-based fixed-point methods have been used to solve many different kinds of chemical process design and optimization problems, perhaps the point of single largest application has been that of multicomponent separation problems, especially equilibrium stage distillation. Quite aside from this, classical thermodynamics provides us with certain fundamental mathematical and physical relationships governing the behavior of nonideal solutions, those being the homogeneity of partial molar excess properties and their derivatives and the Cibbs-Duhem equation. In this work, we draw a connection between the class of Newton-based fixed-
منابع مشابه
A New High Order Closed Newton-Cotes Trigonometrically-fitted Formulae for the Numerical Solution of the Schrodinger Equation
In this paper, we investigate the connection between closed Newton-Cotes formulae, trigonometrically-fitted methods, symplectic integrators and efficient integration of the Schr¨odinger equation. The study of multistep symplectic integrators is very poor although in the last decades several one step symplectic integrators have been produced based on symplectic geometry (see the relevant lit...
متن کاملConvergence of quasi-Newton matrices generated by the symmetric rank one update
Quasi-Newton algorithms for unconstrained nonlinear minimization generate a sequence of matrices that can be considered as approximations of the objective function second derivatives. This paper gives conditions under which these approximations can be proved to converge globally to the true Hessian matrix, in the case where the Symmetric Rank One update formula is used. The rate of convergence ...
متن کاملA Characterization of Positive Quadrature Formulae
A positive quadrature formula with n nodes which is exact for polynomials of degree In — r — 1, 0 < r < « , is based on the zeros of certain quasi-orthogonal polynomials of degree n . We show that the quasi-orthogonal polynomials that lead to the positive quadrature formulae can all be expressed as characteristic polynomials of a symmetric tridiagonal matrix with positive subdiagonal entries. A...
متن کاملQ - Superlinear Convergence O F Primal - Dual Interior Point Quasi - Newton Methods F O R Constrained Optimization
This paper analyzes local convergence rates of primal-dual interior point methods for general nonlinearly constrained optimization problems. For this purpose, we first discuss modified Newton methods and modified quasi-Newton methods for solving a nonlinear system of equations, and show local and Qquadratic/Q-superlinear convergence of these methods. These methods are characterized by a perturb...
متن کاملConvergence of quasi-Newton matrices generated by the symmetric rank one update
Quasi-Newton algorithms for unconstrained nonlinear minimization generate a sequence of matrices that can be considered as approximations of the objective function second derivatives. This paper gives conditions under which these approximations can be proved to converge globally to the true Hessian matrix, in the case where the Symmetric Rank One update formula is used. The rate of convergence ...
متن کامل